

o&W4039(94)E0537-8

The Formation of 3-Methyl-la,7b-dihydro-lH-cycloprop[c]isoquinoline from *trans-N*-[2-(2-Acetylphenyl)cyclopropy^{[1}-2-**(trhuethylsilyQe4hylcarbamate**

Ulf Appelberg, Jerk Vallg&rda and Uli Hacksell*

Department of Organic Pharmaceutical Chemisty, Uppaala Biomedical Centre, Box 574, Uppsala **University,** S-751 23 Uppsala, **Sweden**

Abstmct: 3-Methyl-la, 7b-dihydro-IH-cycloproplclisoguinoline is formedfmm tmns-2-(2-acetylphenyl)cyclopropylnminc generated in situ. The mechanism for this reaction appears to involve the formation of a cis-arylcyclopropylamine via a homoco&gited intermediate.

As part of a current synthetic programme aiming to produce 2-arylcyclopropylamines with ability to stimulate 5-HT_{1A}-receptors' we attempted to form amino derivative (\pm)-1 by treatment of (\pm)-2² with fluoride ion³. This deprotection reaction produces a primary *trans-2-arylcyclopropylamine* from several other derivatives closely related to (\pm) -2.² However, the only product isolated from the reaction mixture was isoquinoline derivative (\pm) -3⁴ and no (\pm) -1 was observed. Apparently, the stereochemistry of the cyclopropyl ring moiety had isomerized from *truns* **to cis** and ring closure had occurred, possibly by a condensation reaction.

i: Methyl acrylate, (o-tolyl)3P, Pd(OAc)₂, Et₃N (91 %). ii: 1. CH₂N₂, Pd(OAc)₂; 2. NaOH/H₂O (59 %). **iii: 1. Ethylchloroformate, Acetone; 2. NaN3lH2O; 3. &, 4.Trimethylsilylethanol (73 %). iv: TBAF (34 %).**

The structure of (\pm) -3 was confirmed by its characteristic spectroscopic properties:⁴ NOE-measurements confirmed the cis-stereochemistry of the ring junction between the cyclopropyl and the isoquinoline moieties and the NMR signal of the endo-C1 hydrogen of (\pm) -3 appears at δ 0.25 ppm, a chemical shift expected for a proton positioned in an anisotropic pseudoaromatic field.⁵ Further, the appearence of a signal at δ 172.1 ppm in the ¹³C-NMR spectrum of (\pm) -3 is consistent with an iminecarbon.

Previously described syntheses of derivatives of cycloprop[c]isoquinoline have predominantly been utilizing intramolecular cycloadditions with iminocarbenes generated from nitrlle ylides by either photochemical ringopening of azirines⁶⁹ or by 1,3-dehydrochlorination of imidoylchlorides.^{10,11} A few examples of cyclizations of cis-N-acyl-2-phenylcyclopropylamines^{12,13} and isothiocyanates¹⁴ have also been reported.

In order to investigate the mechanism of the observed ring forming reaction we prepared the enantiopure $(1R,2S)$ -2¹⁵ from 4,¹⁶ and treated it with TBAF. The resulting product was identical to that formed from racemic 2 demonstrating that both stereogenic centres of the cyclopropyl moiety participate in the isomerization reaction. This indicates that the homoconjugated intermediate 5 is formed during the reaction. An alternative intermediate 6, formed from 1 via a 1,7-homosigmatropic hydride shift, $17-20$ was rejected because of the inability of 1 to obtain a proper geometry for hydride transfer.^{21,22}

Further evidence for the participation of intermediate 5 in the ring forming reaction was obtained by an experiment in which (1R,2S)-2 was treated with catalytic amounts of sodium hydride in THF during 24 h. The resulting mixture consisted of 2 and 7 in a 93:7 ratio according to NMR- and GUMS-analysis. The optical rotation of this mixture was negligible ($[\alpha]_D$ -2.4°) as compared to that of the starting material ($[\alpha]_D$ -71.8°), demonstrating that both trans/cis isomerization and racemization had almost certainly taken place. Most likely, the observed *cisltrans ratio* corresponds to the thermodynamic equilibrium mixture.

On the basis of the above observations, the following mechanistic scheme may be proposed: Deprotection of (lR,2S)-2 gives the amine (lR,2S)-1 which is in rapid equilibrium with its enautiomer and both enantiomers of the cis-isomer 8 via the achiral homoconjugated 5 (a similar cis/trans-isomerization has been observed in the aminocyclopropyl sulfoxide system²³). The thermodynamically less favoured cis-isomer 8 has **the ability to attack the carbonyl function and form amino19 which loses water, thus providing the driving force for the reaction.**

Acknowledgement:

Support for this study was provided by grants from the Swedish Natural Science Research Council and the Swedish Board for Industrial and Technical Development.

References and notes:

- 1. **Arvidsson, L-E.; Johansson, A. M.; Hacksell, U.; Nilsson, J. L. G.; Svensson, K.; Hjort, S.; Magnusson, T.; Carlsson, A.; Lindberg, P.; Andersson, B.; Sanchez, D.;** Wikström, H.; Sundell, S. J. Med. Chem. 1988, 31, 92-99
- **2. Vallg&da, J. Serofonergic** *Arybzyclopropylamines,* **Doctoral Thesis, Uppsala University, 1992**
- **3. Capson, T. L.; Poulter, C. D.** *Tetrahedron Len* **1984,33, 35153518**
- **4. Spectroscopic data; Compound (±)3·HCl: mp 235-237 °C; ¹H-NMR (270 MHz, CD₃OD): 8 8.13 (1H, d, J = 8.1 Hz), 7.88-7.75 (2H, m), 7.57 (lH, dd, J = 7.3 and 7.3 Hz), 3.82 (lH, ddd, J = 3.6, 7.2** and 7.4 Hz), 2.90 (1H, ddd, $J = 5.8$, 7.2 and 9.7 Hz), 2.80 (3H, s, CH₃), 2.09 (1H, ddd, $J = 5.5$, 7.4 and 9.7), 0.25 (1H, ddd, J = 3.6, 5.5 and 5.8 Hz); ¹³C-NMR (270 MHz, CD₃OD): 8 172.1, **141.1, 138.8, 132.8, 130.2, I29.0, 122.7, 35.2, 20.8, 20.1 and 10.1; Anal. Calcd for CllHllN.HCl. Calcd: C, 68.22; H, 6.24; N, 7.23. Found: C, 68.35; H, 6.45; N, 7.30.**
- **5. Motion, K. R.; Robertson, I. R.; Sharp, J. T.; Walkinshaw, M. D. J.** *Chem. Sot. Perkin Trans. I* **1992, 17091719, similar systems: Hunadi, R. J.; Helmkamp, G. K. 1. Org. Chem. 1981, 46.2880-2884**
- **6. Padwa, A.; Ku, A.** *J.* **Am. Chem. Sot. 1978, 100, 2181-2190**
- **7. Hickey, D. M. B.; Moody, C J.; Rees, C. W. J.** *Chem. Sot. Per-kin Trans. 1 1986,* **1119- 1122**
- **8. Moody, C. J.; Warrellow. G. J.** *J. Chem. Sot. Perkin Trans. 1 1987, 913-920*
- **9. Moody, C. J.; Warrellow, G. J. J.** *Chem. Sot. Perkin Trans. I 1986,* **1123-l 128**
- **10.** Motion, K. R.; Robertson, I. R.; Sharp, J. T. *J. Chem. Soc. Chem. Commun.* **1984**, 1531-*1533*
- **11. Motion, K. R.; Robertson, I. R.; Sharp, J. T.; Walkinshaw, M. D.** *J. Chem. Sot. Perkin Trans. I 1992,* **1709-1719**
- **12. Wilson, J. W. U.S Pat. 3.454.578 1969**
- 13. Vecchietti, V.; Giardina, G.; Colle, R. Eur. Pat. 409.489 A2 **1991**
- 14. Bernabé, M.; Fernandez-Alvarez, E. *Eur. J. Med. Chem.* 1979, 14, 33-45
- 15. Synthesis of $(1R.2S)-2$: Ti(i-PrO)₄ (3.1 ml, 10.4 mmol) was added to compound 4 (3.5 g, 7.8 mmol) in benzyl alcohol (10 ml) and the mixture was heated to 150 $^{\circ}$ C for 2 h. The crude mixture was purified by column chromatography $(A_2O_3: Et_2O)$ and the volatiles were evaporated. The crude mixture of ipropyl and benzyl esters was dissolved in aqueous 2 M NaOH (50 ml), MeOH (50 ml) and THF (50 ml). The mixture was stirred for 5 h at room temperature and concentrated. The remaining alkaline aqueous layer was washed with Et₂O (4x120 ml), acidified with 5 M HCl, extracted with Et₂O (3x120 ml), dried (MgSO₄) and concentrated. The crude acid was purified by flash chromatography (SiO₂: Et₂O-light petroleum 2:3 + 2.5 % HOAc) to afford the pure $(1R, 2R)$ -2- $(2$ -acetylphenyl)cyclopropane carboxylic acid (0.47g, 29 %); mp 53-56 °C; [α]_D -171.8° (c = 1, CH₂Cl₂); ¹H-NMR (270 MHz, CDC13): 6 10.26 (lH, broad s), 7.65 (lH, dd, J = 1.3 and 7.6 Hz), 7.40 (lH, ddd, J = 1.3, 7.6 and 7.6 Hz), 7.30 (1H, ddd, J = 1.3, 7.6 and 7.6 Hz), 7.13 (1H, d, J = 7.6), 3.13-3.05 (1H, m), 2.61 $(3H, s, COCH₃), 1.82-1.74 (1H, m), 1.70-1.63 (1H, m)$ and 1.40-1.33 (1H, m); ¹³C-NMR (270) MHz, CDC13): 6 201.7, 179.5, 139.3, 138.6, 131.6, 128.9, 127.4, 126.7, 29.7, 25.7, 23.4 and 16.7; Anal. Calcd for C₁₂H₁₂O₃. Calcd: C, 70.58; H, 5.92. Found: C, 70.55; H, 6.25. Ethyl chloroformate (0.18 ml, 1.9 mmol) was added to a stirred and cooled (-10 "C) solution of the above acid (0.25 g, 1.2 mmol) and triethyl amine (0.24 ml, 1.7 mmol) in dry acetone (10 ml). After 2 h, a solution of NaN₃ (0.14 g, 2.1 mmol) in H₂O (12 ml) was added and the solution was concentrated. The residue was extracted with toluene (4x10 ml). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. The crude acylazide thus obtained was dissolved in dry toluene (4 ml) and heated to 90 "C (bath temperature) for 1 h. The mixture was concentrated and the residue was dissolved in 2-(trimethylsilyl)ethanol (0.7 ml, 4.9 mmol) and heated to 60 °C for 24 h. The mixture was concentrated and the crude carbamate was purified by flash chromatography ($SiO₂: Et₂O$ light petroleum 1:2) to afford the pure TMS-carbamate $(1R,2S)$ -2 $(0.31 \text{ g}, 80 \text{ %})$ as an oil; $[\alpha]_D$ -71.8° $(c = 1, CH_2Cl_2);$ ¹H-NMR (270 MHz, CDCl₃): δ 7.71 (1H, dd, J = 1.3 and 7.6 Hz), 7.42 (1H, ddd, J $= 1.6$, 7.6 and 7.6 Hz), 7.29 (1H, ddd, J = 1.3, 7.6 and 7.6 Hz), 7.20 (1H, d, J = 7.6 Hz), 5.34 (1H, broad s, NH), 4.17 (2H, dd, J = 8.6 and 8.6 Hz, OCH₂), 2.62 (3H, s, COCH₃), 2.55-2.46 (2H, m), 1.27-1.17 (2H, m), 1.00 (2H, dd, J = 8.6 and 8.6 Hz, C-CH₂-Si), 0.04 (9H, s, Si(CH₃)₃); ¹³C-NMR (270 MHz, CDC13): 6201.6, 157.3, 140.0, 138.4, 131.9, 129.4, 128.9, 126.2, 63.0, 32.5, 29.6, 24.0, 17.7, 15.5 and -1.5 (3C); Anal. Calcd for C₁₇H₂₅NO₃Si. Calcd: C, 63.91; H, 7.89; N, 4.38. Found: C, 63.5; H, 7.50; N, 4.00.
- 16. Vallgårda, J.; Appelberg, U.; Csöregh, I.; Hacksell, U. J. Chem. Soc. Perkin Trans. 1, in press
- 17. Hansen, H-J. *Mechanisms of molecular migrations;* Wiley-Interscience: New York. 1971; vol 3, pp. 177-236
- 18. Heimgartner, H.; Hansen, H. J.: Schmid, H. *Helv. Chim. Acta 1970, 53, 173-176*
- 19. Heimgartner, H.; Hansen, H. J.; Schmid. H. *Helu. Chim. Actu 1972, 55, 1385-1403*
- 20. Hug, R.; Hansen, H-J.; Schmid, H. *Helv. Chim. Acta.* 1972, 55, 1828-184:
- 21. *P* Spangler, C. W. *Chem. Rev. 976, 76, 187-217*
- 22. Houk, K. N.; Li, Y.; Evanseck, J. D. *Angew. Chem. int. Ed. Engl. 1992, 3* 1, 682-708
- 23. Rynbrandt, R. H.; Dutton, F. E.; Chidester, C. G. *J. Am. Chem. Sot. 1976, 98, 4882-4886*

(Received in UK 4 February 1994; *revised* 14 *March 1994; accepted* 17 *March 1994)*